

TOPOLOGY - III, EXERCISE SHEET 2

Exercise 1. *Δ -complex as a quotient of simplices.* (medium)

Let X be a space with a Δ -complex structure. Recall from the lecture that this means that there exists a collection of continuous maps $\{\sigma_\alpha : \Delta_\alpha^{n_\alpha} \rightarrow X\}_{\alpha \in I}$ for some indexing set I following certain properties. Recall also that edges of a simplex have the data of an orientation. Prove that X can be realised as a quotient of the disjoint union of simplices $\bigsqcup_{\alpha \in I} \Delta_\alpha^{n_\alpha}$ by identifying some faces of the same dimension and orientation.

Exercise 2. *Δ -complexes are Hausdorff* (medium)

Show that if X is a Δ -complex then it is a Hausdorff space.

Hint: Think of X as a quotient of $\bigsqcup_{\alpha \in I} \Delta_\alpha^{n_\alpha}$ and try to construct separating opens inductively.

Exercise 3. *Some surfaces as Δ -complexes.* (easy)

Show that the following spaces possess a Δ -complex structure:

- (1) \mathbb{T}^2 .
- (2) S^2 .
- (3) \mathbb{RP}^2 .
- (4) The Klein Bottle. (The surface one obtains by gluing two Möbius Strips along the equator).

Exercise 4. *S^n and \mathbb{RP}^n as Δ -complexes.* (medium)

- (1) Show that S^n has a Δ -complex structure by considering the polyhedron in \mathbb{R}^{n+1} with $2n+2$ vertices; Two vertices on each coordinate axis.
- (2) Realise \mathbb{RP}^n as a Δ -complex by using part (1).

Exercise 5. *Cone of a Δ -complex.* (medium)

Let X be a topological space, we define the cone of X as the quotient:

$$CX := X \times [0, 1] / (X \times \{0\}).$$

Show that if X is a Δ -complex then so is CX .